Category Environtal Studies

WHAT WERE THE FIRST LIVING THINGS ON EARTH?

          Although viruses are the simplest living things, they need to live and reproduce themselves inside a larger organism, so they are unlikely to have been the first living things on Earth. The earliest evidence of life that has been found is tiny fossils of primitive bacteria in rocks about 3800 million years old. Later, blue-green algae evolved. They could use energy from the Sun and in so doing gave off oxygen. Modern plants and animals share these simple organisms as ancestors.

          The earliest evidence for life on Earth arises among the oldest rocks still preserved on the planet. Earth is about 4.5 billion years old, but the oldest rocks still in existence date back to just 4 billion years ago. Not long after that rock record begins, tantalizing evidence of life emerges: A set of filament-like fossils from Australia, reported in the journal Astrobiology in 2013, may be the remains of a microbial mat that might have been extracting energy from sunlight some 3.5 billion years ago. Another contender for world’s oldest life is a set of rocks in Greenland that may hold the fossils of 3.7-billion-yer-old colonies of cyanobacteria, which form layered structures called stromatolites.

          Some scientists have claimed to see evidence of life in 3.8-billion-year-old rocks from Akilia Island, Greenland. The researchers first reported in 1996 in the journal Nature that isotopes (forms of an element with different numbers of neutrons) in those rocks might indicate ancient metabolic activity by some mystery microbe. Those findings have been hotly debated ever since — as, in fact, have all claims of early life.

          Most recently, scientists reported in the journal Nature that they had discovered microfossils in Canada that might be between 3.77 billion and 4.29 billion years old, a claim that would push the origins of life to very shortly after Earth first formed oceans. The filament-like fossils contained chemical signals that could herald life, but it’s hard to prove that they do, researchers not involved in the study told Live Science. It’s also hard to prove that fossils found in ancient rocks are necessarily ancient themselves; fluids have penetrated cracks in the rock and might have allowed newer microbes in to older rock. The researchers used samarium-neodymium dating to arrive at the 4.29 billion maximum age for the fossils. This method, which uses the decay of one rare-earth element into another, may measure the age of the magma that formed the rocks rather than the rocks themselves, an issue that has also dogged claims of the Earth’s oldest rocks.   

          Still, the fact that suggestive evidence of life arises right as the rock record begins raises a question, said University of California, Los Angeles, geochemist Elizabeth Bell in a SETI Talk in February 2016: Is the timing a coincidence, or were there earlier forms of life whose remnants disappeared with the planet’s most ancient rocks?

          The period that occurred before the rock record begins is known as the Hadean. It was an extreme time, when asteroids and meteorites pummeled the planet. Bell and her colleagues said they might have evidence that life arose during this very unpleasant time. In 2015, the research team reported discovering graphite, a form of carbon, in 4.1-billion-year-old crystals of zircon. The ratio of isotopes in the graphite suggested a biological origin, Bell and her colleagues wrote in the journal Proceedings of the National Academy of Sciences.

          “There is some skepticism, which is warranted,” Bell told Live Science. Meteorites or chemical processes might have caused the odd carbon ratios, she said, so the isotopes alone aren’t proof of life. Since the publication of the 2015 paper, Bell said, the researchers have found several more of the rare-carbon inclusions, which the scientists hope to analyze soon.

          From what is known of this period, there would have been liquid water on the planet, Bell told Live Science in an interview. There might have been granite, continental-like crust, though that’s controversial, she said. Any life that could have existed would have been a prokaryote (a single-celled organism without membrane-bound nuclei or cell organelles), Bell added. If there was continental crust on Earth at the time, she said, prokaryotes might have had mineral sources of nutrients like phosphorus.

          A different approach to the hunt for Earth’s early life suggests that oceanic hydrothermal vents may have hosted the first living things. In a paper published in July 2016 in the journal Nature Microbiology, researchers analyzed prokaryotes to find the proteins and genes common to all of these organisms, presumably the final remnants of the Last Universal Common Ancestor (LUCA) — the first shared relative from which all life today descends.

Picture Credit : Google

WHEN DID LIFE BEGIN ON EARTH?

          The Earth began to be formed over 4.5 billion years ago, but for millions of years nothing could live here. Gradually, the Earth’s crust and the atmosphere formed. The simplest forms of life, bacteria and algae, probably began to grow less than four billion years ago. Human beings did not appear until about two million years ago.

          Microbial life forms have been discovered on Earth that can survive and even thrive at extremes of high and low temperature and pressure, and in conditions of acidity, salinity, alkalinity, and concentrations of heavy metals that would have been regarded as lethal just a few years ago. These discoveries include the wide diversity of life near sea–floor hydrother­mal vent systems, where some organisms live essentially on chemical energy in the absence of sunlight. Similar environments may be present elsewhere in the solar system.

          Under­standing the processes that lead to life, however, is complicated by the actions of biology itself. Earth’s atmosphere today bears little resemblance to the atmosphere of the early Earth, in which life developed; it has been nearly reconstituted by the bacteria, vegetation, and other life forms that have acted upon it over the eons. Fortunately, the solar system has preserved for us an array of natural laboratories in which we can study life’s raw ingredients — volatiles and organics — as well as their delivery mechanisms and the prebiotic chemical processes that lead to life. We can also find on Earth direct evidence of the interactions of life with its environments, and the dramatic changes that life has undergone as the planet evolved. This can tell us much about the adaptability of life and the prospects that it might survive upheavals on other planets.

Picture Credit : Google 

WHAT CAN VOLCANOES TELL US?

          One interesting aspect of volcanic eruptions is that surrounding areas are covered rapidly in molten rock or ash, sometimes preserving the animals, plants and structures underneath. Archaeologists have been able to study life in Roman times, for example, by examining the remains of Pompeii, in Italy, buried when Vesuvius erupted in AD 79.

          I guess the main good effect that volcanoes have on the environment is to provide nutrients to the surrounding soil. Volcanic ash often contains minerals that are beneficial to plants, and if it is very fine ash it is able to break down quickly and get mixed into the soil.

          Perhaps the best place to look for more information about this would be to look up references about some of the countries where lots of people live in close proximity to volcanoes and make use of the rich soils on volcanic flanks. These would include Indonesia, The Philippines, Japan, Italy, etc.

          I suppose another benefit might be the fact that volcanic slopes are often rather inaccessible, especially if they are steep. Thus they can provide refuges for rare plants and animals from the ravages of humans and livestock.

          Finally, on a very fundamental scale, volcanic gases are the source of all the water (and most of the atmosphere) that we have today. The process of adding to the water and atmosphere is pretty slow, but if it hadn’t been going on for the past 4.5 billion years or so we’d be pretty miserable.

          Volcanoes have done wonderful things for the Earth. They helped cool off the earth removing heat from its interior. Volcanic emissions have produced the atmosphere and the water of the oceans. Volcanoes make islands and add to the continents.

Picture Credit : Google 

WHY DO VOLCANOES ERUPT?

          Like earthquakes, volcanoes mainly occur along fault lines. Molten rock, gases and ash are forced out through a gap in the Earth’s crust to release the pressure beneath. Over thousands of years, cooled rock sometimes builds up around the fissure in the ground to form the familiar conical shape of a volcano.

          Deep within the Earth it is so hot that some rocks slowly melt and become a thick flowing substance called magma. Since it is lighter than the solid rock around it, magma rises and collects in magma chambers. Eventually, some of the magma pushes through vents and fissures to the Earth’s surface. Magma that has erupted is called lava.

          Some volcanic eruptions are explosive and others are not. The explosivity of an eruption depends on the composition of the magma. If magma is thin and runny, gases can escape easily from it. When this type of magma erupts, it flows out of the volcano. A good example is the eruptions at Hawaii’s volcanoes. Lava flows rarely kill people because they move slowly enough for people to get out of their way. If magma is thick and sticky, gases cannot escape easily. Pressure builds up until the gases escape violently and explode. A good example is the eruption of Washington’s Mount St. Helens. In this type of eruption, the magma blasts into the air and breaks apart into pieces called tephra. Tephra can range in size from tiny particles of ash to house-size boulders.

          Explosive volcanic eruptions can be dangerous and deadly. They can blast out clouds of hot tephra from the side or top of a volcano. These fiery clouds race down mountainsides destroying almost everything in their path. Ash erupted into the sky falls back to Earth like powdery snow. If thick enough, blankets of ash can suffocate plants, animals, and humans. When hot volcanic materials mix with water from streams or melted snow and ice, mudflows form. Mudflows have buried entire communities located near erupting volcanoes.

Picture Credit : Google 

WHAT IS A GEYSER?

          In some areas, underground lakes, rivers and springs are heated by molten rocks below. The hot water bubbles to the surface in springs and forms pools, or it may shoot upwards under great pressure, forming a geyser.

          Geysers result from the heating of groundwater by shallow bodies of magma. They are generally associated with areas that have seen past volcanic activity. The spouting action is caused by the sudden release of pressure that has been confining near-boiling water in deep, narrow conduits beneath a geyser. As steam or gas bubbles begin to form in the conduit, hot water spills from the vent of the geyser, and the pressure is lowered on the water column below. Water at depth then exceeds its boiling point and flashes into steam, forcing more water from the conduit and lowering the pressure further. This chain reaction continues until the geyser exhausts its supply of boiling water.

          The boiling temperature of water increases with pressure; for example, at a depth of 30 metres (about 100 feet) below the surface, the boiling point is approximately 140 °C (285°F). Geothermal power from steam wells depends on the same volcanic heat sources and boiling temperature changes with depth that drive geyser displays.

          As water is ejected from geysers and is cooled, dissolved silica is precipitated in mounds on the surface. This material is known as sinter. Often geysers have been given fanciful names (such as Castle Geyser in Yellowstone National Park) inspired by the shapes of the colourful and contorted mounds of siliceous sinter at the vents.

         Geysers are rare. There are more than 300 of them in Yellowstone in the western United States —approximately half the world’s total—and about 200 on the Kamchatka Peninsula in the Russian Far East, about 40 in New Zealand, 16 in Iceland, and 50 scattered throughout the world in many other volcanic areas. Perhaps the most famous geyser is Old Faithful in Yellowstone. It spouts a column of boiling water and steam to a height of about 30 to 55 metres (100 to 180 feet) on a roughly 90-minute timetable.

Picture Credit : Google 

What are the effects of Hypoxia?

  • While fish and mobile invertebrates such as shrimp and crabs migrate out of hypoxic areas, slow-moving, bottom-dwelling creatures such as clams and oysters die after extended exposure.
  • It has also been found that fish that flee the potential suffocation may quickly become unconscious and die.
  • It was found in a study that low oxygen levels recorded along the Gulf Coast of North America led to reproductive problems in fish involving decreased size of organs, low egg counts and lack of spawning.
  • Alteration in marine ecosystem also has socio-economic impact on humans. It affects people whose livelihood depends on fishing.

 

Picture Credit : Google