Category Science

What is the study of fungi called?

Mycology is the branch of biology concerned with the study of fungi, including their genetic and biochemical properties, their taxonomy and their use to humans as a source for tinder, traditional medicine, food, and entheogens, as well as their dangers, such as toxicity or infection.

Fungi are fundamental for life on earth in their roles as symbionts, e.g. in the form of mycorrhizae, insect symbionts, and lichens. Many fungi are able to break down complex organic biomolecules such as lignin, the more durable component of wood, and pollutants such as xenobiotics, petroleum, and polycyclic aromatic hydrocarbons. By decomposing these molecules, fungi play a critical role in the global carbon cycle.

Fungi and other organisms traditionally recognized as fungi, such as oomycetes and myxomycetes (slime molds), often are economically and socially important, as some cause diseases of animals (such as histoplasmosis) as well as plants (such as Dutch elm disease and rice blast).[citation needed]

Apart from pathogenic fungi, many fungal species are very important in controlling the plant diseases caused by different pathogens. For example, species of the filamentous fungal genus Trichoderma considered as one of the most important biological control agents as an alternative to chemical based products for effective crop diseases management.

Field meetings to find interesting species of fungi are known as ‘forays’, after the first such meeting organized by the Woolhope Naturalists’ Field Club in 1868 and entitled “A foray among the funguses”.

Some fungi can cause disease in humans and other animals – The study of pathogenic fungi that infect animals is referred to as medical mycology.

 

Picture Credit : Google

How escalator machine helps to move things?

Escalators are one of the largest, most expensive machines people use on a regular basis, but they’re also one of the simplest.

At its most basic level, an escalator is just a simple variation on the conveyer belt. A pair of rotating chain loops pulls a series of stairs in a cons­tant cycle, moving a lot of people a short distance at a good speed.

The core of an escalator is a pair of chains, looped around two pairs of gears. An electric motor turns the drive gears at the top, which rotate th­e chain loops. A typical escalator uses a 100 horsepower motor to rotate the gears. The motor and chain system are housed inside the truss, a metal structure extending between two floors.

Instead of moving a flat surface, as in a conveyer belt, the chain loops move a series of steps. The coolest thing about an escalator is the way these steps move. As the chains move, the steps always stay level. At the top and bottom of the escalator, the steps collapse on each other, creating a flat platform. This makes it easier to get on and off the escalator. In the diagram below, you can see how the escalator does all of this.

Each step in the escalator has two sets of wheels, which roll along two separate tracks. The upper set (the wheels near the top of the step) are connected to the rotating chains, and so are pulled by the drive gear at the top of the escalator. The other set of wheels simply glides along its track, following behind the first set.

 

Picture Credit : Google

How crane machine helps to move things?

Cranes combine simple machines to lift extremely heavy objects. In balance-style cranes, the crane’s beam is balanced at a point, called the fulcrum. This allows it to lift heavy objects with a relatively small force. In this way, the crane’s beam acts as a simple lever. Cranes also make use of the pulley, another simple machine. Tower cranes often have more than one pulley. This helps it multiply its force to lift heavy objects.  

Cranes exist in an enormous variety of forms, each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes, used for constructing high buildings. Mini-cranes are also used for constructing high buildings, in order to facilitate constructions by reaching tight spaces. Finally, we can find larger floating cranes, generally used to build oil rigs and salvage sunken ships.

Some lifting machines do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker cranes and loader cranes.

 

Picture Credit : Google

How grocery trolley machine helps to move things?

Shopping carts (also known as shopping trolleys or shopping baskets in some parts of the world) are a great example of a simple machine at work. They consist of only two main parts: a metallic basket and a set of wheels. The basket has a handle attached to it (which helps in steering the cart), and it’s installed above a set of four small wheels that make pushing, pulling and steering the cart very convenient.

It’s quite clear that a shopping cart consists of very simple components, but it is of tremendous assistance to shoppers while they roam throughout the shopping mart looking for a particular flavor of cookie or a big bottle of anti-dandruff shampoo.

In some countries, including India, the United Kingdom and Australia, there is a rather queer problem with trolleys; they seem to have a mind of their own! Suppose you try to turn a trolley towards, say, the left. It would definitely turn, but not towards the left; it would either go towards the right or move straight ahead. The same thing happens when you push them in the forward direction; it goes left or right unless you apply a surprisingly large amount of force to move it in the desired direction.

 

Picture Credit : Google

How potter’s wheel machine helps to move things?

The earliest wheel and axle machines were used as potter’s wheels. A potter’s wheel is a flat, round stone. By applying effort to a pedal, the potter makes the stone spin on its axle. The potter works a piece of clay between her hands on the spinning stone, shaping the clay into a pot. Clay pots were very important in everyday life in ancient times. They were used to store food, water, and medicines.

A potter’s wheel may occasionally be referred to as a “potter’s lathe”. However, that term is better used for another kind of machine that is used for a different shaping process, turning, similar to that used for shaping of metal and wooden articles.

The techniques of jiggering and jolleying can be seen as extensions of the potter’s wheel: in jiggering, a shaped tool is slowly brought down onto the plastic clay body that has been placed on top of the rotating plaster mould. The jigger tool shapes one face, the mould the other. The term is specific to the shaping of flat ware, such as plates, whilst a similar technique, jolleying, refers to the production of hollow ware, such as cups.

 

Picture Credit : Google

What is CD-ROM?

CD-ROM’s are important tools for computer users. CD-ROM’s are discs that store words, music, and images. Encyclopedias, games, and other programs that would require greater storage capacity can fit onto one CD-ROM. CD-ROM stands for computer disc read-only memory.

When you put a CD-ROM into your computer’s drive, files are copied from the disc to the computer’s hard drive. These files tell the computer how to access all the information on the CD-ROM.

A DVD (digital video disc) is the same size as a CD-ROM but can store much more information. Unlike a CD or CD-ROM, the DVD is able to record data (information) on both the top and the bottom of the plastic disc. And it can record two layers of data on each side. A DVD player can also play CD-ROM’s.

A DVD contains layers of digital data encoded in tiny pits. In a DVD player, a lens focuses a laser beam on the desired layer. As the disc rotates, the pits and the flat areas between them reflect patterns of light to a photo detector, which changes the patterns into electrical signals. A single layer of a DVD has more pits, placed closer together, than an ordinary CD has, and so can store more data.

 

Picture Credit : Google