Category Science

Why is Carbon Monoxide is dangerous gas?

Carbon monoxide is a colourless, odourless, tasteless gas produced when substances containing carbon-such as coal, wood, oil or petrol-are burned without enough oxygen present.

Why is it dangerous?

It is poisonous. Being colourless and odourless a dangerous amount of the gas can leak out before it is detected. If inhaled, carbon monoxide gets into the bloodstream and combines with the haemoglobin in the red blood corpuscles. preventing them from carrying life-giving oxygen to the various parts of the body. If breathed in continuously in an enclosed space the person will slip into unconsciousness and die.

In cities, a great deal of carbon monoxide is released into the atmosphere by car engines.

Picture Credit : Google 

WHAT IS EARTH MADE OF?

The structure of Earth can be divided into three parts: the crust, the mantle and the core. Made up from mainly oxygen and silicon, the crust is the outermost layer. It is the familiar landscape on which we live: rocks, soil and seabed. Beneath the crust is the mantle, a layer almost 3000 km deep. It is made of metal silicates, sulphides and oxides. This layer is so hot that the rock often flows like sticky road tar – only very, very slowly. Below the mantle is a core of metal, mostly iron, sulphur and nickel. The outer portion of the core is so very hot that the metal is always molten. The Earth’s magnetic field is created here. Earth’s inner core is even hotter – estimated to be around 6000 °C – but the metal is solid because pressure within the inner core is extreme, so the metal cannot melt.

1: The Core

The composition of the Earth begins with the inner parts of the planet. The Earth’s core is the densest part of the planet. It is made up of iron and nickel, and the core is so hot that is heats the rest of the planet around it. The core has chosen how the planet will be heated, and the core of the planet determines the equilibrium of the planet itself.

2: The Magma

The magma underneath the Earth’s surface spins around the world as it keeps the crust warm. The warmth of the magma can be felt in certain parts of the world where the ground is very close to the magma. The magma can be found rising out of the surface of the Earth at volcanoes and underwater cracks in the crust. The magma is the lifeblood of the Earth even though it is quite a scary thing to encounter today.

3: The Crust

The crust of the Earth is the ground that everyone walks on today. The crust is much thinner than the other components of the Earth, but it manages to support all the life on the planet. The Earth’s surface is covered with the crust completely, but much of the Earth’s surface is covered in water. Citizens of the Earth may never explore the floor of the sea, but that area is still a part of the Earth’s crust.

4: Magnetism

The magnetism of the Earth that helps it stay attached to the sun in orbit comes directly from the core. The core’s construction keeps the magnetism of the Earth going in ways that scientists do not understand completely. The magnetism created by the core also helps the Earth create a gravitational field that keeps everyone on the planet.

Credit: AES

Picture credit: Google

Can peacocks predict rain?

Have you watched a peacock dance? It is a beautiful sight to behold. We have heard people say that a peacock dance is an indicator of rain. How true is this? Sadly, the reality is not as cool as it sounds. The male of the Indian peafowl species is called the peacock. (The female is called the peahen and the offspring, the peachick). The stunning pattern on their metallic blue-green covert feathers (called a train), and the eye spots are something unique to the Asiatic species. (The Congo peacocks do not have the train nor the eyespots).

A peacock opens its train and dances to attract a peahen. It is part of the courtship ritual, where the male fans his tail displaying the eyespots. Peacocks moult (shed) their train at the end of every breeding season. So, what is the link between rain and their dance? Peafowls breed during the wet or rainy season. Hence, it is only a coincidence if you watched a peacock dance and you witnessed a rain soon after.

Picture Credit : Google 

When did Surveyor 3 land on the Moon?

Launched on April 17, 1967, Surveyor 3 was the third engineering flight of the Surveyor series and the second in the series to achieve a soft landing on the moon. It was based on Surveyor 3’s surface sampling tests that it was concluded that the lunar surface could hold the weight of an Apollo lunar module

The Apollo 11 mission will remain in the collective consciousness of human beings forever. This is because it was the first time we humans managed to set foot on our natural satellite, the moon.

It is important to remember that this was made possible due to a number of missions that preceded this one. Among these was the Surveyor 3 spacecraft which proved beyond doubt that an Apollo lunar module could indeed safely land on the moon’s surface.

The third engineering flight of the Surveyor series, this spacecraft was the first to carry a surface-sampling instrument that could reach up to 1.5 m from the lander and dig up to 18 cm. Unlike its predecessors, Surveyor 3 began its mission from a parking orbit around Earth on April 17, 1967.

Bouncing to a stop

While it became the second in the series after Surveyor 1 to achieve a soft landing on the moon three days later on April 20, it was far from smooth. As highly reflective rocks confused the landers descent radar, the main engine did not cut off at the correct moment during the descent to the lunar surface.

This meant that Surveyor 3 bounced off the moon, not once but twice-first to a height of 10 m and then again to a height of 3 m. It was third time lucky for Surveyor 3 as it landed softly in the southeastern region of Oceanus  Procellarum.

With its worst behind it. Surveyor 3 set out to do what it was sent to do. Within an hour after landing, the spacecraft began transmitting the first of over 6,000 TV pictures of the surrounding areas.

Similar to wet sand

The most important phase of the mission included deployment of the surface sampler for digging trenches, manipulating lunar material, and making bearing tests. Based on commands from Earth, the probe was able to dig four trenches, performing four bearing tests and 13 impact tests.

The results from these experiments were the most important aspect of this mission. The scientists were able to conclude that lunar soil’s consistency was similar to that of wet sand and that it would be solid enough to bear an Apollo lunar module when it landed.

The start of May saw the first lunar nightfall following the arrival of Surveyor 3. The spacecraft’s solar panels stopped producing electricity and its last contact with Earth was on May 4. While Surveyor 1 could be reactivated twice after lunar nights, Surveyor 3 could not be reactivated when it was attempted 336 hours later during the next lunar dawn.

Tryst with Apollo 12

That, however, wasn’t the last of what we heard about Surveyor 3. Four months after the huge success of Apollo 11, NASA launched Apollo 12 in November 1969. The lunar module of Apollo 12 showcased pinpoint landing capacity as the precise lunar touchdown allowed the astronauts to land within walking distance of the Surveyor 3 spacecraft. During their second extra vehicular activity on November 19, astronauts Charles Conrad, Jr. and Alan L. Bean walked over to the inactive Surveyor 3 lander and recovered parts, including the camera system and the soil scoop.

Just like moon rocks, these were returned to Earth for studying, as they offered scientists a unique chance to analyse equipment that had been subjected to long-term exposure on the moon’s surface. The studies of the parts showed that while Surveyor 3 had changed colour due to lunar dust adhesion and exposure to the sun, the TV camera and other hardware showed no signs of failure.

While NASA placed some of the Surveyor 3 parts into storage along with moon rocks and soil samples, the remaining parts found home elsewhere. Even though NASA treats them as lunar samples and not artefacts, they are greatly valued when gifted or loaned out, both to museums and individuals.

Picture Credit : Google 

Does deserts ‘breathe’ water vapor?

Deserts are arid ecosystems, receiving fewer than 25 cm of precipitation a year. They are hot dry and deserted. But the sand dunes aren’t just inert masses. They, in fact. “breathe” water vapor and are very much alive. Scientists have developed a super-sensitive probe that has recorded how water vapor from the surrounding air percolate between sand grains.

Researchers at Cornell University, New York, and University of Nantes, France, developed over a decade a new form of instrumentation called capacitance probes. to study the moisture content in sand dunes to better understand the process by which agricultural lands turn to desert. The probe uses multiple sensors to record everything from solid concentration to velocity to water content, all with unprecedented spatial resolution. It is so sensitive to moisture that it can pick up tiny films of water on a single grain of sand!

Conducting the research at Qatar, they combined data on wind speed and direction as well as ambient temperature and humidity. The study revealed just how porous sand is, with a tiny amount of air seeping through it.

When wind flows over the dune, it creates imbalances in the local pressure. This forces air to go into and out of the sand. “So, the sand is breathing, like an organism breathes,” the researchers note. This breathing could be the reason behind how microbes live deep in sand dunes, even when no liquid water is available. The researchers also found that at the surface of the dune, the probe measured less evaporation than scientists were predicting. This shows that the leaching of moisture from the sand dune to the atmosphere is a slow chemical process.

The team’s paper has been published in the Journal of Geophysical Research-Earth Surface. Probes that can sensitively measure moisture within sand could help experts find invisible signs of water, say, on Mars.

Picture Credit : Google 

Six environmental issues and how to solve them?

Earth has undergone many environmental changes in its history. But the current ones are being caused by one species: humans. Our activities contribute to global warming, climate change, extreme weather events, species extinction, resource depletion, and what not. Let’s take a closer look at six of them to mark Earth Day, observed on April 22.

1. POLLUTION

Since the industrial revolution, environmental pollution has been on the rise. Pollution is the introduction of harmful contaminants into the environment that negatively alters our surroundings. While pollution can take several forms, such as light and noise, the three major types are air, land, and water pollution. Humans contribute to each of these every day. Pollution affects biodiversity, ecosystems, and human health worldwide. Air pollution is attributed to 11.65% of deaths globally, for instance. Vehicular and industrial emission, and basically, our dependence on fossil fuel for energy, is the chief cause of air pollution. While water pollution comes from sewage, chemicals, agricultural runoffs, etc. land pollution is caused by indiscriminate dumping of garbage, toxic materials, and industrial waste. Not to mention the harm caused by plastic pollution to marine and terrestrial life. As economies and population grow, pollution too increases at an alarming rate globally.

 2.GLACIER MELT AND SEA-LEVEL RISE

Nineteen of the warmest years in the recorded history of the planet has occurred since 2000. Models predict that as the world consumes more fossil fuel, greenhouse gas concentrations will continue to rise, and Earth’s average surface temperature will rise with them. Average surface temperatures could rise between 2°C and 6°C by the end of the 21st Century. A warmer atmosphere causes glaciers and polar ice sheets to melt rapidly. Glacial melt has a direct impact on freshwater flow because glaciers store water in the form of ice during the colder seasons and release it during warmer seasons by way of melting. This serves as a water source for humans, animals, and vegetation. Glacier melt also contributes to unusual rise in sea level. The impact of sea-level rise includes flooding of coastal areas, increased soil erosion, disappearance of some low-lying islands, saltwater intrusion, and habitat destruction in coastal areas, which, in turn, can affect coastal ecosystems.

What can you do?

A few tips on how we can reduce our impact on global warming: 1. Urge your parents to switch to renewable sources such as solar to power your home.

2. Use energy-efficient appliances at home and school

3. Support local businesses that use and promote sustainable, climate-smart practices

3. DEFORESTATION

Deforestation is the destruction of forests in order to make the land available for other uses. Earth loses 18.7 million acres of forests per year, which is equal to 27 football fields every minute, according to the World Wildlife Fund. Farmers clear forests to use the land for agriculture. Trees are cut for mining. for use as fuel. housing, and urbanisation, contruction of dams and infrastructual projects, and for making furniture. Deforestation is considered to be one of the contributing factors to global warming and climate change. Trees absorb not only the carbon dioxide that we exhale, but also the other heat-trapping greenhouse gases that human activities emit. With increase in deforestation, larger amounts of these gases will enter the atmosphere and global warming will increase further. As much as 70 % of the world’s plants and animals live in forests. They are losing their habitats due to deforestation. Loss of habitat can lead to species extinction.

What can you do?

1. Plant saplings

2. Go paperless

3. Go for used-furniture instead of buying new ones every time.

4.WATER CRISIS

If global temperatures continue to rise, rainfall will increasingly become a thing of extremes: long dry spells here. dangerous floods there and in some places, intense water shortages. This will also affect agriculture. Worldwide, farmers are struggling to keep up with shifting weather patterns and increasingly unpredictable water supplies. Extreme weather patterns also destroy life, property. and livelihood. The rapid increase in population and the massive growth in the industrial sector have increased the demand for water multifold. Overexploitation and wastage of water are major issues, especially in urban areas. A UN report says that at least two billion people live in countries with high water stress. That is more than a quarter of the world population. Ecosystems and biodiversity are threatened by the scarcity of water resources. Water crisis can also lead conflict between States that share water sources such as river.

What can you do?

1. Do not waste water

2. Fix leaking tap and try to reuse water wherever possible

3. Urge your parents to install rainwater harvesting facility

4. Don’t pollute water: Do not dump household solid waste or oil and chemicals into the drainage system. Do not litter. They are likely to end up in a waterbody.

5.WILDFIRE

As warmer temperatures increase evaporation, the land becomes drier and drier, enhancing the chances of wildfires. The intense, destructive fires that have dominated headlines in recent years are expected to become more frequent, even in places such as the Arctic. Extreme fires are projected to rise up to 14% by 2030 and 30% by mid-century, according to a new report by the UN Environment Programme.

Wildfires not only destroy forests and cause loss of life, they emit large amounts of greenhouse gases such as CO2, methane, and carbon monoxide. The smoke from burning vegetation can pose serious risks to respiratory health. Animals are directly impacted by wildfire. They lose their life or their home and food source.

What can you do?

1. Build your campfire in an open location and far from flammables

2. Do not contribute to global warming

3. Avoid burning wastes around dry grass.

6. WILDLIFE TRADE

Wildlife trade is a big business, run by international networks. Animals and birds are trafficked across the globe for meat, skin, bone, fur, and other body parts. In addition, many species are sold as pets. Experts at TRAFFIC, the wildlife trade monitoring network, estimate that the illegal wildlife commerce runs into billions of dollars. Wildlife trafficking threatens the survival of some of the Earth’s most iconic species: tiger, elephant, rhinoceros, pangolin, etc. It affects food chain and threatens the local ecosystem. Wildlife trade also increases the chances of human-animal contact, putting humans at the risk of contracting diseases. COVID-19 was linked to wildlife trade and eating of wildlife. People who handled, killed, and sold wild animals made up nearly 40 % of the first cases of SARS. Poorly regulated wet markets and illegal wildlife trade offer a unique opportunity for viruses to spill over from wildlife hosts into the human population.

What can you do?

1. Create awareness among the public about wildlife trade.

2. Say no to exotic pets. They may have been trafficked and kept in unsafe conditions before being sold.

3. Avoid buying things made from ivory, horns, and leather. This discourages illegal trading.

Picture Credit : Google