Category Science

Why is it said that Edison’s contribution to the development of the electric bulb is unmatchable?

          We saw that during the 1800s, many inventors have worked hard to develop an effective light bulb. But, the most successful among these inventors was Thomas Alva Edison.

          Edison’s serious research into making a practical incandescent lamp began around 1878. He wanted to invent a safe, yet cheap electric light that could replace the earlier ones. Between 1878 and 1880, he conducted many experiments, with carbon filaments, platinum, and other metals. In 1879, he successfully tested a bulb with a carbon filament that lasted 13.5 hours.

          The following year, Edison and his team discovered that a carbonized bamboo filament could last over 1200 hours. This marked the beginning of commercially made light bulbs in 1880.

          As we know, this is just one of the many inventions made by Edison.

          Thus, Edison’s contributions remain unparalleled and, for his tireless work, he was rightfully described as one of the greatest inventors. 

Who invented light bulbs with tungsten filaments that are widely used today?

Scientists and inventors have used a number of filaments for incandescent bulbs in the past. But today, the most popular one is the tungsten filament.

It was William David Coolidge, who developed a method to manufacture tungsten filaments in 1910.

The biggest advantage of tungsten was that it had a high melting point, and was able to withstand heat and corrosion. That is exactly what attracted inventors to it. Besides, using inert gases inside the bulb increased its luminescence.

As years passed, the element was used in other lamps too, including halogen, fluorescent, mercury vapour etc. Tungsten is perhaps the most durable type of filament used in bulbs even today.

It is said that Thomas Alva Edison himself knew that tungsten would prove to be the best choice for filaments. But in his day, the technology and machinery required to produce the wire in fine form was not available.

Why is an ammeter important?

         An ammeter is an instrument used to measure the flow of electric current in a circuit. It measures current in terms of amperes, which is the unit of current. The speed and force of a current can be measured using this instrument.

         In the past, the instrument relied on the Earth’s magnetic field to take the readings of current. But as technology improved, better ammeters were designed and developed. Ammeters are mostly used in science laboratories. Other than scientists, electricians also use this instrument, to check the electric circuit.

        There are smaller units of reading to amperes, namely, milliamperes and microamperes. These are measured using milliammeters and microammeters respectively.

        There are two types of ammeters – analogue and digital. In analogue ammeters, there is a needle that points to the reading. In digital ammeters, they are displayed digitally.

 

Why is the voltmeter important equipment?

        A voltmeter is an instrument that measures the voltage between two points in an electric circuit. It can be connected to a circuit by joining its positive and negative wires to where the voltage is. With such an arrangement, the instrument is said to be parallel to the electrical circuit.

       A voltmeter can be used for many purposes. For instance, to check whether there is any more electricity left in a battery.

       In an analogue voltmeter, the pointer indicates the number of volts. In a digital voltmeter, the reading will be displayed digitally. There are also voltmeters that can be mounted on a transformer, and other huge devices.

       Yet another variety is a voltmeter that uses amplifiers in them. Such meters can measure very small, or tiny voltages of microvolts, or even less.

 

What is a galvanometer?

         A galvanometer is a tool that measures the flow of electric charges through a wire. This basic device consists of a coil placed in a magnetic field. It can be used for detecting and comparing small electric currents.

        The ideas of galvanometers are known to have developed from an observation made by Hans Orsted in 1820. He had found out that the needle of a magnetic compass deflects near a wire that has electric current passing through it. But it was Johann Schweigger who built the first sensitive galvanometer in the same year. Galvanometers, since then, came to commercial use.

        A galvanometer can be used as an ammeter, as well as a voltmeter. By connecting a shunt in parallel to the coil, it acts an ammeter, and if the shunt is connected in series with the galvanometer coil, it becomes a voltmeter. 

What is a multimeter?

          A multimeter is an instrument that measures the voltage, current, and resistance of an electrical device. Also known as a VOM (Volt-Ohm-Milliammeter), they are very useful in providing field measurements or detecting faults with accuracy.

          The first multimeter was invented by Donald Macadie, a British post office engineer who was unhappy with the need to carry separate instruments needed for the maintenance of telecommunication circuits. His invention was the instrument that could measure amperes, volts and ohms, and was named the avometer.

          The device is commonly used by electricians and other experts to troubleshoot problems on appliances, motors, circuits, power supplies and wiring systems. They could use the device on batteries, switches, power sources etc for measuring or diagnosing.

            Multimeters can be analogue or digital. Analogue multimeters are cheaper, but their readings are not as accurate as the digital meters. Recent digital multimeters are advanced enough to measure extremely tiny differences or fluctuations.